Facebook

Instagram

Benbildning inspirerade till ”mikrorobotar” som kan bilda eget ben


2022-01-18

Danfeng Cao, doktorand vid Linköpings universitet, monterar en bit ben som ”mikroroboten” sedan kommer linda sig runt och växa ihop med.
Bild: Olov Planthaber/LiU
Danfeng Cao, doktorand vid Linköpings universitet, monterar en bit ben som ”mikroroboten” sedan kommer linda sig runt och växa ihop med.

När spänning appliceras kommer materialet (till vänster) långsamt böja sig mot kycklingbenet (vitt). Om vätskan innehåller mineraler som behövs för benbildning kommer materialet inom några dagar bilda artificiellt ben som fäster till kycklingbenet.
Bild: Olov Planthaber/LiU
När spänning appliceras kommer materialet (till vänster) långsamt böja sig mot kycklingbenet (vitt). Om vätskan innehåller mineraler som behövs för benbildning kommer materialet inom några dagar bilda artificiellt ben som fäster till kycklingbenet.

Det svarta materialet är en elektroaktiv polymer som ändrar volym när forskarna applicerar en svag spänning, vilket får den enkla ”mikroroboten” att böja sig. På andra sidan syns gelen där forskarna fäst biomolekyler som gör att det mjuka gelmaterialet kan hårdna som ben.
Bild: Olov Planthaber/LiU
Det svarta materialet är en elektroaktiv polymer som ändrar volym när forskarna applicerar en svag spänning, vilket får den enkla ”mikroroboten” att böja sig. På andra sidan syns gelen där forskarna fäst biomolekyler som gör att det mjuka gelmaterialet kan hårdna som ben.

Jose Martinez (till vänster), Danfeng Cao och Edwin Jager (till höger) vid Linköpings universitet.
Bild: Olov Planthaber/LiU
Jose Martinez (till vänster), Danfeng Cao och Edwin Jager (till höger) vid Linköpings universitet.

Inspirerade av hur ben i skelettet bildas har forskare vid Linköpings universitet och Okayama University i Japan utvecklat en kombination av material som kan anta olika former och hårdna av sig självt. Materialet är först mjukt och blir sedan hårt genom att ben bildas av samma mineraler som finns i skelettet.

När vi föds har vi luckor mellan skallbenen som är täckta med mjuk bindväv, som kallas fontaneller. Tack vare fontanellerna kan skallen pressas ihop och anpassas till den trånga förlossningskanalen. Efter födseln omvandlas vävnaden i fontanellerna långsamt till hårt ben. Nu har forskare kombinerat material som tillsammans efterliknar naturens process.

– Vi vill kunna använda detta till applikationer där materialet ska ha olika egenskaper vid olika tidpunkter. I ett första skede är materialet mjukt och följsamt, och sedan kan det låsas i ett läge. Möjliga användningsområden är läkning av komplicerade benbrott eller mjuka mikrorobotar som skulle kunna injiceras genom en liten nål vartefter roboten vecklar ut sig och bildar sina ben, säger Edwin Jager, universitetslektor vid Institutionen för fysik, kemi och biologi, IFM, vid Linköpings universitet.

Idén kläcktes under en forskningsvistelse i Japan då materialforskaren Edwin Jager träffade Hiroshi Kamioka och Emilio Hara, som forskar kring ben. De japanska forskarna hade upptäckt en sorts biomolekyler som på kort tid kunde stimulera bentillväxt. Vore det möjligt att kombinera biomolekylen med Jagers materialforskning för att utveckla nya material vars styvhet kan varieras?

I den aktuella studien, som publiceras i Advanced Materials, har forskarna konstruerat ett slags enkel ”mikrorobot”, som kan anta olika former och ändra hårdhet. Forskarna utgår från ett gelmaterial kallat alginat. På ena sidan om gelen får ett polymermaterial växa in. Detta material är elektroaktivt och ändrar volym när forskarna applicerar en svag spänning, vilket får mikroroboten att böja sig åt ena hållet. På den andra sidan av gelen fäster forskarna biomolekyler som gör att det mjuka gelmaterialet kan bli hårt. Dessa biomolekyler utvinns från cellmembranet på en typ av cell som är viktiga för benbildning. När materialet doppas i en cellodlingsvätska, som ska efterlikna miljön i kroppen och innehåller kalcium och fosfor, får biomolekylerna gelen att mineraliseras och hårdna som ben.

En av de potentiella tillämpningar som forskarna är intresserade av är benläkning. Idéen är att det mjuka materialet, som får kraft och rörelseförmåga av den elektroaktiva polymeren, rör sig in i hålrum i komplicerade benbrott och vecklar ut sig. När materialet sedan hårdnat kan det utgöra grunden för bildning av nytt ben, är tanken. I den aktuella studien demonstrerar forskarna att materialet kan linda sig runt kycklingben och att den artificiella bentillväxten kan växa ihop med kycklingbenet.

Genom att göra mönster i gelen kan forskarna påverka på vilket sätt den enkla mikroroboten kommer att böja sig när spänning tillförs. Vinkelräta linjer i ytan får materialet att böja sig i en halvcirkel, medan diagonala linjer gör att den vrider sig som en korkskruv.

– Genom att styra hur materialet vrider sig kan vi få fram olika rörelsemönster i mikrorobotar, men också styra hur materialet vecklar upp sig i exempelvis ett benbrott. Vi kan baka in rörelsen i materialets struktur, så att man slipper ha komplexa styrprogram för mikrorobotarna, säger Edwin Jager.

Forskarna går nu vidare med att undersöka egenskaperna hos materialkombinationen och hur den fungerar tillsammans med levande celler, för att lära sig mer om dess biokompatibilitet.

Forskningen har gjorts med finansiellt stöd av bland andra Japanese Society for the Promotion of Science (JSPS) Bridge Fellowship program och KAKENHI, Vetenskapsrådet, Promobilia och STINT, Stiftelsen för internationalisering av högre utbildning och forskning.


Källa: Linköpings universitet

Skriv ut



Danfeng Cao, doktorand vid Linköpings universitet, monterar en bit ben som ”mikroroboten” sedan kommer linda sig runt och växa ihop med.
Danfeng Cao, doktorand vid Linköpings universitet, monterar en bit ben som ”mikroroboten” sedan kommer linda sig runt och växa ihop med.

Benbildning inspirerade till ”mikrorobotar” som kan bilda eget ben

Inspirerade av hur ben i skelettet bildas har forskare vid Linköpings universitet och Okayama University i Japan utvecklat en kombination av material som kan anta olika former och hårdna...

Läs mer
Hexagon


Cobotar förbättrar framtidens patologilabb

Automation är en viktig del av lösningen för att möta framtidens kvalitetskrav...

Läs mer
Sana Alajmovic, grundare och vd i healthtechbolaget Sigrid Therapeutics, samt vinnare på Female Founders event 2021.

Sana Alajmovic korad till Årets kvinnliga grundare av Dagens industri

För femte året i rad har Di Digitals läsare utsett Årets kvinnliga grundare....

Läs mer
Virtuellt event för läkemedels- och medicinbranschen (bilden är en illustration).

Universal Robots arrangerar virtuellt event för läkemedelsbranschen

Nu kan chefer, specialister och andra yrkesgrupper inom läkemedels- och medicinbranschen...

Läs mer


Att skapa förutsättningar i vården med hygieniska komponenter

På dagens globala marknad är steril miljö helt avgörande för de...

Läs mer
Max Hahn, doktorand vid Umeå centrum för molekylär medicin, studerar vävnadsmaterial med fluorescerande ljusfältsmikroskop.

Ny metod möjliggör detaljstudier av mänskliga organ i 3D

Forskare vid Umeå universitet har utvecklat en metod för att studera celler i mä...

Läs mer
DrugLog är klar för den amerikanska marknaden.

DrugLog® klar för lansering i USA

Pharmacolog har genomfört registrering av DrugLog hos den amerikanska lä...

Läs mer
Johanna Rosén, professor på Institutionen för fysik, kemi och biologi vid Linköpings universitet.

MXener öppnar för framtidens nanoteknologi

Konstgjorda njurar, kraftfulla batterier och effektiv vattenrening är några av...

Läs mer


Getinge lanserar en ny holistisk lösning för preparering av bioreaktorer

I en tid då mycket av den medicinska forskningen är inriktad på vacciner, lanserar...

Läs mer


CELLINK lanserar nästa generations bioprinters – BIO MDX-serien

CELLINK har nu lanserat BIO MDX-serien, nästa generations bioprinters utformade för high...

Läs mer
Darcy Wagner, universitetslektor och docent i <span>l</span><span>ungbioengineering och regeneration</span><span>, </span>som är huvudförfattare till studien.

Nytt biobläck – ett steg närmare 3D-printade mänskliga organ

Forskare vid Lunds universitet har utformat ett nytt biobläck som gör det möjligt...

Läs mer


Mest lästa











Heidenhain





Unica Media AB © 2014
Org.nr 556961-2624
Unica Media AB
Hammarby Fabriksväg 23
120 30 Stockholm

Kontakt
info(at)unicamedia.se
Annonsering
annons(at)unicamedia.se